
1. Introduction
Climate extremes such as floods and heavy precipitation every year lead to severe infrastructural damage and 
human lives lost across the world (Field et al., 2012; Marcolongo et al., 2022; Tanoue et al., 2016; Wallemacq 
& House, 2018). Besides, they are expected to become more frequent due to anthropogenic climate change (Ali 
& Mishra, 2018; Papalexiou & Montanari, 2019; Wasko & Sharma, 2017). Floods are a significant concern in 
monsoonal regions since most precipitation is concentrated just in a few months. For example, India receives 
more than 80% of the total annual rainfall during summer monsoon (June–September) rainfall events caused by 
synoptic-scale cyclonic depressions (Hunt et al., 2016; Hunt & Fletcher, 2019), which lead to the occurrence 
of several floods during this season in different basins across the country. To effectively mitigate the negative 
impacts of these extreme events, we need to provide decision-makers with robust tools that they can use in the 
mid-and long-term planning of flood risk adaptation strategies. Most available tools consist of hydrological 
models to provide daily operational forecasts for short-range (1 day to a couple of weeks) or statistical models 
considering hydroclimatic variables from the previous season to generate seasonal mean streamflow forecasts.

Operational streamflow forecasts are implemented using physically based hydrologic or conceptual models that 
consider forecasts of hydrometeorological variables, such as rainfall and temperature, as their forcing (Clark 
et al., 2004; Tiwari et al., 2021; Werner & Yeager, 2013; Wijayarathne & Coulibaly, 2020). Other alternatives to 
such hydrological models are statistical-physical hybrid models (Kurian et al., 2020; Li et al., 2015; McInerney 
et  al.,  2017; Ossandón, Rajagopalan, et  al.,  2022), and purely statistical models (Govindaraju, 2000; Hadi & 
Tombul, 2018; Papacharalampous & Tyralis, 2018; Sivakumar, 2016). These modeling approaches only provide 
daily streamflow forecasts for short lead times (no longer than 1 or 2 weeks), and the skills decline with increas-
ing lead times, more so for peak flows. While they are useful for short-term actions for flood impact mitigation, 
they do not allow for long-term planning of mitigation actions, such as months ahead of the flood season.

Abstract We develop a space-time Bayesian hierarchical modeling (BHM) framework for two flood risk 
attributes—seasonal daily maximum flow and the number of events that exceed a threshold during a season 
(NEETM)—at a suite of gauge locations on a river network. The model uses generalized extreme value 
(GEV) and Poisson distributions as marginals for these flood attributes with non-stationary parameters. The 
rate parameters of the Poisson distribution and location, scale, and shape parameters of the GEV are modeled 
as linear functions of suitable covariates. Gaussian copulas are applied to capture the spatial dependence. 
The best covariates are selected using the Watanabe-Akaike information criterion (WAIC). The modeling 
framework results in the posterior distribution of the flood attributes at all the gauges and various lead times. 
We demonstrate the utility of this modeling framework to forecast the flood risk attributes during the summer 
peak monsoon season (July-August) at five gauges in the Narmada River basin (NRB) of West-Central India for 
several lead times (0–3 months). As potential covariates, we consider climate indices such as El Niño–Southern 
Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Pacific Warm Pool Region (PWPR) from 
antecedent seasons, which have shown strong teleconnections with the Indian monsoon. We also include new 
indices related to the East Pacific and West Indian Ocean regions depending on the lead times. We show useful 
long lead skill from this modeling approach which has a strong potential to enable robust risk-based flood 
mitigation and adaptation strategies 3 months before flood occurrences.
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Models for forecasting seasonal and sub-seasonal streamflow rely on the skill of hydroclimatic variables from 
the previous season, such as snow cover (e.g., Koster et al., 2010; Livneh & Badger, 2020; Pagano et al., 2009; 
Wood et al., 2016), changes in land cover conditions (De Perez et al., 2017; Penn et al., 2020), or large-scale 
climate indices (Robertson & Wang, 2012; Steirou et al., 2019; Wang & Robertson, 2011; Zhao et al., 2016), 
among others. Among the modeling approaches are: statistical techniques based on multiple linear regression 
(e.g., Penn et al., 2020; Ruiz et al., 2007; Sankarasubramanian & Lall, 2003; Steinschneider & Lall, 2016) or 
Bayesian approaches that account for parameter uncertainty (e.g., Kwon et al., 2008, 2009; Lima & Lall, 2010; 
Zhao et al., 2016), physicallybased models that consider the uncertainty of initial conditions or inputs by perturb-
ing them (Anghileri et al., 2016; Wood et al., 2016), and hybrid models, which combine hydrological models 
with statistical models to post-process their output and to enhance forecast skill (Bennett et al., 2016, 2017, 2021; 
Mendoza et al., 2014). Although this type of forecast help inform reservoir operations during the dry season at a 
local scale, they do not consider crucial features for estimating regional flood hazards, such as the spatial depend-
encies in high-flow occurrences across different catchments on a river network (Brunner et al., 2020; Ossandón, 
Brunner, et al., 2022).

Among the statistical approaches, Bayesian models emerge as an attractive alternative as they provide a robust 
estimation of streamflow extremes and parameters uncertainty via posterior distributions (Reis & Stedinger, 2005; 
Reza Najafi & Moradkhani,  2013; Yan & Moradkhani,  2015) and allow considering the spatial dependence 
structure in a process layer (Bracken et al., 2018; Renard, 2011; Renard & Lang, 2007). However, most of the 
applications of Bayesian frameworks are mainly for obtaining return levels from frequency analysis of extreme 
precipitation (e.g., S. G. Coles & Tawn, 1996; Cooley et al., 2007; Cooley & Sain, 2010; Ossandón et al., 2021; 
Renard, 2011) and floods (e.g., López & Francés, 2013; Najafi & Moradkhani, 2014; Steirou et al., 2019; Villarini 
et al., 2012; Yan & Moradkhani, 2016). Fewer studies implemented Bayesian methods for seasonal peak flow 
forecasts (Kwon et al., 2008, 2009; Ossandón, Brunner, et al., 2022; Steirou et al., 2022)- mostly for return-level 
forecasts for single sites without accounting for spatial dependencies. Only Ossandón, Brunner, et  al.  (2022) 
showed a skillful spring seasonal maximum streamflow forecast at multiple gauges in the Upper Colorado River 
basin (UCRB) at 0- to 2- months lead time. They used a Bayesian hierarchical model that accounts for the spatial 
dependence structure of the data and nonstationarity through suitable covariates from previous seasons. Most 
forecast skill in the UCRB came from snow accumulated during winter.

The seasonal peak forecast in rainfed basins, where we cannot rely on the skill provided by the snow, is incredibly 
challenging. Particularly in India, there is no record of any attempt to provide summer monsoon seasonal (i.e., 
June–September) peak flow forecasts and their attributes. Strong correlations between ISMR and large-scale 
climate variables such as El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation (ENSO), and the 
Indian Ocean Dipole (IOD) have been documented (e.g., Curtis et al., 2001; Kumar et al., 2006; Saji et al., 1999). 
However the influence of ENSO (IOD) on the ISMR was found to be weakened (strengthened) in the recent 
decades (Hrudya et  al.,  2020; Krishnaswamy et  al.,  2015; Rajagopalan & Molnar,  2012). While continuous 
efforts have been made to predict the ISMR one season ahead using statistical and physical models based on these 
teleconnections, their skills are limited (r ∼ 0.3–0.46; Delsole & Shukla, 2012; Jain et al., 2019; Köhn-Reich & 
Bürger, 2019; Rajeevan et al., 2012). Thus, the interesting questions are—do these teleconnections translate to 
attributes of seasonal streamflow extremes? Can they be exploited to provide long-lead forecasts in a river basin 
if they do?

With this motivation and need, we develop a Bayesian Hierarchical Modeling (BHM) framework, based on 
that proposed by Ossandón, Brunner, et al.  (2022), to model and forecast two flood risk attributes—seasonal 
daily maximum flow and the number of events that exceed a threshold during a season (NEETM)—at a suite 
of gauge locations on a river network. These two attributes will help policymakers devise mitigation and adap-
tation strategies before the start of the season by considering early alerts that complement existing forecasts at 
shorter time scales to increase flood preparedness. These could include the early release of water from reser-
voirs to increase their flood retention capacity, devote financial resources to acquire disaster response supplies, 
and implementing communication strategies to enhance community disaster preparedness (Steirou et al., 2022; 
Zanardo et al., 2019). We apply the BHM forecasting framework to the summer peak monsoon season (July–
August) at five Narmada River basin (NRB) gauges and three lead times. For the remainder of this paper, we use 
the term “daily monsoon maximum streamflow” to refer to the maximum daily streamflow during the summer 
peak monsoon season (July–August). The novelty here is that this study is one of the first efforts at a long-lead 
forecast of seasonal extremes in a river basin in India and using large-scale climate indices as covariates while 
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also accounting for spatial dependencies in streamflow on the river network and robust quantification of uncer-
tainties in the forecasts.

2. Proposed Framework
2.1. General Model Structure

Consider that qi(t) for t  =  1, …, k represents streamflow extremes at time point t for location i. Then,  
q = [q1, …, qm] corresponds to the matrix of seasonal streamflow extremes at m gauges in a river basin over k 
years. To model them, we use a Bayesian hierarchical model (BHM; Cooley et al., 2007; Wikle et al., 1998) that 
allows for spatial dependence and nonstationarity. In addition to a data layer, which parameters are directly related 
to the observed data, BHM includes additional layers that allow accounting for the latent process, typically called 
process or latent layers. Here, in the data layer, we use a Gaussian copula with generalized extreme value (GEV) 
margins (S. Coles, 2001; He et al., 2015; Katz, 2013) to model the joint distribution of streamflow at m gauges 
in each year as follows:

𝐹𝐹1(𝑞𝑞1(𝑡𝑡)), . . . , 𝐹𝐹𝑚𝑚(𝑞𝑞𝑚𝑚(𝑡𝑡)) ∼ 𝐶𝐶𝑔𝑔(𝚺𝚺) (1)

𝑞𝑞𝑖𝑖(𝑡𝑡) ∼ 𝐺𝐺𝐺𝐺𝐺𝐺 (𝜇𝜇𝑖𝑖(𝑡𝑡), 𝜎𝜎𝑖𝑖(𝑡𝑡), 𝜉𝜉𝑖𝑖), 𝑖𝑖 = 1, . . . , 𝑚𝑚 (2)

where Fi is the CDF of the GEV distribution for the gauge i, Cg is an m-dimensional Gaussian copula with 
dependence matrix Σ, and μi(t) ∈ (−∞, ∞), σi(t) > 0 and ξi(t) ∈ (−∞, ∞) are the GEV parameters (location, scale, 
and shape). To account for the nonstationarity in the second layer (first process layer), we consider that the GEV 
parameters can vary over time. We model the first two GEV parameters (location and scale) as linear functions 
of time-dependent large-scale climate variables and regional mean variables from the previous season while the 
shape parameter is considered stationary:

𝜇𝜇𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝜇𝜇0𝑖𝑖 +

𝑛𝑛
∑

𝑗𝑗=1

𝛼𝛼𝜇𝜇𝑗𝑗𝑖𝑖𝑧𝑧𝑗𝑗(𝑡𝑡), 𝑖𝑖 = 1, . . . , 𝑚𝑚 (3)

log(𝜎𝜎𝑖𝑖(𝑡𝑡)) = 𝛼𝛼𝜎𝜎0𝑖𝑖 +

𝑛𝑛
∑

𝑗𝑗=1

𝛼𝛼𝜎𝜎𝑗𝑗𝑖𝑖𝑧𝑧𝑗𝑗(𝑡𝑡), 𝑖𝑖 = 1, . . . , 𝑚𝑚 (4)

𝜉𝜉𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, . . . , 𝑚𝑚 (5)

where 𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝜎𝜎𝜎𝜎𝑖𝑖 , and 𝐴𝐴 𝐴𝐴𝜉𝜉𝑖𝑖 are the regression coefficients for the predictor j and gauge i, and 𝐴𝐴 𝐴𝐴𝑗𝑗(𝑡𝑡) is the covariate j 
at the time t. log(σ)) is used to ensure positive scale parameters. The validity of the nonstationary location and 
scale parameters can be checked through the significance of their slope coefficients' posterior PDFs (𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇𝑖𝑖 ≠ 0 , 
and 𝐴𝐴 𝐴𝐴𝜎𝜎𝜎𝜎𝑖𝑖 ≠ 0 for j > 0). Here, we model the shape parameter for each catchment individually but consider it 
stationary in time and restricted to a specific range of potential values (−0.5 to 0.5; Bracken et al., 2016; Cooley 
et al., 2007). Covariates will be discussed in Section 3.2.

Although several copulas are available (Hochrainer-Stigler, 2020), this study focuses on Gaussian copulas because 
of their easy implementation in a Bayesian and high-dimensional framework.The copula dependence matrix, Σ, 
is a symmetric positive definite matrix that captures the strength of dependence between all gauge pairs by the 
correlation coefficient. The element ρij of Σ quantifies the dependence between gauges i and j, and its values can 
vary between −1 and 1, as follows:

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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��1 ��2 ⋯ ��(�−1) 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Note that since Σ is symmetric, only m(m − 1)/2 dependence parameters must be fitted (values in the lower 
or upper triangle of Σ). The Gaussian copula only assumes linear correlation after quantile transformation of 
the marginals with the inverse normal CDF. This assumption does not impose a linear correlation structure on 
the marginal distributions, meaning that non-linear dependence between variables can be captured at the data 
level (Bracken et al., 2018). The Gaussian copula constructs the joint cumulative distribution function (CDF) of            

𝐴𝐴 𝐪𝐪(𝑡𝑡) = [𝑞𝑞𝑖𝑖(𝑡𝑡)]
𝑚𝑚

𝑖𝑖=1 as

𝐹𝐹 (𝐪𝐪(𝑡𝑡)) = ΦΣ(𝐮𝐮(𝑡𝑡)) (7)

where 𝐴𝐴 ΦΣ(⋅) is the m-dimensional multivariate normal distribution joint CDF with dependence matrix Σ, 
𝐴𝐴 𝐮𝐮(𝑡𝑡) = [𝑢𝑢𝑖𝑖(𝑡𝑡)]

𝑚𝑚

𝑖𝑖=1
 , 𝐴𝐴 𝐴𝐴𝑖𝑖(𝑡𝑡) = Φ−1(𝐹𝐹𝑖𝑖𝑡𝑡[𝑞𝑞𝑖𝑖(𝑡𝑡)]) with Φ being the CDF of the standard normal distribution, and Fit(·) is the 

marginal GEV CDF or empirical CDF for the streamflow gauge i at time t. The corresponding joint PDF at the 
time t is

𝑓𝑓 (𝐪𝐪(𝑡𝑡)) =

∏𝑚𝑚

𝑖𝑖=1
𝑓𝑓𝑖𝑖(𝑞𝑞𝑖𝑖(𝑡𝑡))

∏𝑚𝑚

𝑖𝑖=1
𝜓𝜓(𝑢𝑢𝑖𝑖(𝑡𝑡))

ΨΣ(𝐮𝐮(𝑡𝑡)) (8)

where ψ corresponds to the standard normal PDF, fi to the marginal GEV PDF at site i, and ΨΣ to the joint PDF 
of an m-dimensional multivariate normal distribution (Bracken et al., 2018; Ghosh & Mallick, 2011).

There are two main approaches for estimating the unknown parameters of the conditional copula 
(Hochrainer-Stigler, 2020). The first one, known as pseudo-observations fitting, estimates the copula parame-
ters without assuming specific parametric distribution functions of the marginals, and pseudo-observations are 
used instead. The second approach is called inference functions for margins (IFMs). This approach estimates 
the marginal distribution parameters in the first step, and the copula parameters are estimated in the second step 
(third process layer). Here, we considered the IFMs approach since it allows for joint parameter estimation in a 
Bayesian framework.

Figure 1 displays a conceptual sketch of the BHM, which shows the data layer (Gaussian copula and marginal 
distributions) and the process layer (time dependence of marginal GEV distribution parameters).

Note that this framework can be easily adapted to model another variable of interest by changing the marginal 
distribution in Equation 2 and modifying Equations 3–5 accordingly. For example, to model the second flood risk 

Figure 1. Conceptual schematic of Bayesian Hierarchical Model. Purple boxes denote the data, the orange box the marginal distribution parameters, gray boxes the 
models, and blue circles the inferred quantities. Model boxes correspond to the data layer (Gaussian copula and marginal distributions) and the latent layer (time 
regressions of marginal distribution parameters). 𝐴𝐴 𝜽𝜽𝑖𝑖

(

𝑡𝑡𝑗𝑗
)

 denotes the vector of the marginal distribution parameters.
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attribute, NEETM, we replace the GEV distribution in Equation 2 with a Poisson distribution (Poisson(λi(t))), 
which is appropriate to model a discrete number of events, such as the case here. The rate parameter is 
non-stationary (λi(t)) and is therefore modeled as a function of temporal covariates as follows:

𝜆𝜆𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝜆𝜆0𝑖𝑖 +

𝑛𝑛
∑

𝑗𝑗=1

𝛼𝛼𝜆𝜆𝑗𝑗𝑖𝑖𝑧𝑧𝑗𝑗(𝑡𝑡), 𝑖𝑖 = 1, . . . , 𝑚𝑚 (9)

where 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝑖𝑖 is the regression coefficient for the predictor j and gauge i, and 𝐴𝐴 𝐴𝐴𝑗𝑗(𝑡𝑡) is the covariate j at the time t. We 
omit a copula in the data layer since it is unsuitable for modeling discrete data like NEETM.

2.2. Likelihood and Priors

Let 𝐴𝐴 𝐳𝐳 = [𝐳𝐳1, ⋯, 𝐳𝐳𝑛𝑛] be a matrix of all covariates and 𝐴𝐴 𝜶𝜶 =
[

𝜶𝜶𝜇𝜇,𝜶𝜶𝜎𝜎,𝜶𝜶𝜉𝜉

]

 a matrix of the GEV regression coefficients. 
By Bayes' rule, the posterior is

𝑝𝑝(𝜶𝜶,𝚺𝚺|𝐪𝐪, 𝐳𝐳) ∝ 𝑝𝑝(𝐪𝐪|𝐳𝐳,𝜶𝜶,𝚺𝚺)𝑝𝑝(𝚺𝚺)𝑝𝑝(𝜶𝜶) (10)

where the first term on the right-hand side is the copula likelihood which, assuming temporal independence of 
the observations, can be written as

𝑝𝑝(𝐪𝐪|𝐳𝐳,𝜶𝜶,𝚺𝚺) =

𝑘𝑘
∏

𝑡𝑡=1

𝑝𝑝(𝐪𝐪(𝑡𝑡)|𝐳𝐳(𝑡𝑡),𝜶𝜶,𝚺𝚺) (11)

where 𝐴𝐴 𝐴𝐴(𝐪𝐪(𝑡𝑡)|𝐳𝐳(𝑡𝑡),𝜶𝜶,𝚺𝚺) corresponds to the likelihood displayed in Equation 8. The terms 𝐴𝐴 𝐴𝐴(𝜶𝜶) and 𝐴𝐴 𝐴𝐴( 𝚺𝚺) from 
Equation 10 represents the priors of the GEV regression coefficients and Gaussian copula dependence matrix, 
which are defined as

𝑝𝑝(𝜶𝜶) =

𝑚𝑚
∏

𝑖𝑖=1

(

𝑛𝑛
∏

𝑗𝑗=0

𝑝𝑝
(

𝛼𝛼𝜇𝜇𝑗𝑗𝑖𝑖

)

𝑝𝑝
(

𝛼𝛼𝜎𝜎𝑗𝑗𝑖𝑖

)

)

𝑝𝑝
(

𝛼𝛼𝜉𝜉𝑖𝑖

)

 (12)

𝑝𝑝
(

𝛼𝛼𝜇𝜇𝜇𝜇𝑖𝑖

)

= 𝑁𝑁
(

0, 𝐴𝐴𝜇𝜇 𝑖𝑖

)

 (13)

𝑝𝑝
(

𝛼𝛼𝜎𝜎𝜎𝜎𝑖𝑖

)

= 𝑁𝑁
(

0, 𝐵𝐵𝜎𝜎𝑖𝑖

)

 (14)

𝑝𝑝
(

𝛼𝛼𝜉𝜉𝑖𝑖

)

= 𝑁𝑁(0, 𝐶𝐶𝑖𝑖) (15)

𝑝𝑝( 𝚺𝚺) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜂𝜂) (16)

Where 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 , and Ci correspond to the prior variances for the location 𝐴𝐴
(

𝛼𝛼𝜇𝜇𝜇𝜇𝑖𝑖

)

 , scale 𝐴𝐴
(

𝛼𝛼𝜎𝜎𝜎𝜎𝑖𝑖

)

 , and shape 𝐴𝐴
(

𝛼𝛼𝜉𝜉𝑖𝑖

)

 GEV 
regression coefficients, and LKJcorr(η) is the LKJ correlation matrix density with η being the shape parameter 
(Lewandowski et al., 2009). The specific values of the priors 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 , Ci, and η will be described in Section 3.3.

2.3. Estimation of Ensembles of Seasonal Maximum Streamflow Forecasting

The posterior predictive distributions can be approximated using ensembles from Monte Carlo. Thus, the predic-
tive posterior distribution of monsoon daily maximum streamflow (ensembles) for the m streamflow gauges are 
obtained via Monte Carlo from GEV distribution using the posterior distribution (N samples) of GEV regres-
sion coefficients, αμ, ασ, and αξ, and Gaussian copula dependence matrix, Σ. The steps for this procedure are as 
follows.

1.  If the posterior PDFs of the slope coefficients of the GEV parameters are found to be significant, compute 
the GEV parameters (𝐴𝐴 𝐴𝐴𝑖𝑖(𝑡𝑡) , 𝐴𝐴 log(𝜎𝜎𝑖𝑖(𝑡𝑡)) ) for each year and gauge using 𝐴𝐴 𝜶𝜶𝜇𝜇𝑖𝑖 , 𝐴𝐴 𝜶𝜶𝜎𝜎𝑖𝑖 , and covariates, 𝐴𝐴 𝒛𝒛(𝑡𝑡) , using Equa-
tions 3 and 4.

2.  Then, simulate non-exceedance probabilities, ϕit, for the m streamflow gauges from a Gaussian copula with 
a dependence matrix, Σ.

3.  After that, compute the daily monsoon maximum streamflow for each streamflow gauge i at time t using the 
expression for the quantile function of the GEV.
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𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖(𝑡𝑡) +
𝜎𝜎𝑖𝑖(𝑡𝑡)

𝜉𝜉𝑖𝑖

[

(−log(𝜙𝜙𝑖𝑖𝑡𝑡))
−𝜉𝜉𝑖𝑖 − 1

]

, 𝑖𝑖 = 1, . . . , 𝑚𝑚 (17)

4.  Repeat steps 2–3 for each year of the record.

This procedure is repeated N times, and the N samples form an approximation of the posterior predictive distri-
bution. A similar approach is followed for simulating NEETM from Poisson distribution without considering a 
Gaussian copula.

2.4. Estimation of Ensembles of NEETM

We adapt the same procedure for simulating ensembles of NEETM at streamflow gauge i using the posterior 
distribution (N samples) of Poisson regression coefficients, 𝐴𝐴 𝜶𝜶𝜆𝜆𝑖𝑖 , by replacing the GEV distribution in Equation 2 
with a Poisson distribution and excluding a copula in the data layer for NEETM modeling. The steps are as 
follows.

1.  If the posterior PDFs of the slope coefficients 𝐴𝐴
(

𝜶𝜶𝜆𝜆𝑖𝑖

)

 ) for the Poisson parameter (λi(t)) are found to be signifi-
cant, calculate λi(t) for each year using 𝐴𝐴 𝜶𝜶𝜆𝜆𝑖𝑖 , and covariates, 𝐴𝐴 𝒛𝒛(𝑡𝑡) according to Equation 9. If not, set λi(t) equal 
to 𝐴𝐴 𝐴𝐴𝜆𝜆0𝑖𝑖 .

2.  Simulate the non-exceedance probability, Fit, for each year using the Poisson margin.
3.  Compute the NEETM for each year by employing the Poisson quantile function.

Repeat this procedure N times for every gauge.

3. Application to the Narmada River Basin
We demonstrate the framework proposed in the previous section by its application to forecasting monsoon daily 
maximum streamflow at five gauges in the Narmada River basin (NRB) from 0- to 3-month lead time (Figure 2). 
The NRB is a narrow and elongated basin that stretches in the East-West direction, and it rises in the Amarkantak 
hills of central India. The NRB, with a catchment area of approximately 97,882 km 2, is the largest river, draining 
into the Arabian Sea in west India. The mean annual rainfall over the basin is 1,120 mm (1951–2018), with most 
of it occurring during the summer monsoon season (June–September), which causes flood events mainly during 
July–August in the basin. Therefore, providing skillful forecasting of peak monsoon season maximum stream-
flow several months in advance would be helpful for the implementation of risk mitigation strategies.

Figure 2. Map of the Narmada River basin, including five sub-basin outlets (red circles), the 150-m elevation bands, and 
some of the major dams in the basin: Bargi, Tawa, Indirasagar, Jobat, and Sardar Sarovar (from upstream to downstream 
direction).
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3.1. Data

Daily peak monsoon season(July and August) streamflow data at five gauges in the Narmada River basin—
Sandiya, Hoshangabad, Handia, Mandleshwar, and Garudeshwar—were obtained from the India Water Resource 
Information System (IWRIS) (Figure  2 and Table  1) for the period 1978–2018. The five gauges encompass 
drainage areas ranging from 32,495 to 86,494 km 2 and elevations varying between 12 and 301 m above sea level 
(m.a.s.l.). The mean streamflow, mean seasonal streamflow (July–August), and maximum seasonal streamflow 
(July-August) span from 301 to 997 m 3 s −1, 1,410 to 2,938 m 3 s −1, and 19,700 to 52,000 m 3 s −1, respectively. 
Reservoirs inflows and releases were not considered since they are unavailable or have long periods of missing 
values. We computed the daily monsoon maximum streamflow for each year at each streamflow. Garudeshwar 
had no monsoon daily streamflow record in 1995, so the maximum flow was set as a missing value.

To justify the inclusion of a copula in the BHM to capture the spatial dependence structure of the data, we 
assessed the spatial dependence of daily monsoon maximum streamflow for the five gauges using the Spear-
man correlation coefficient for each pair of stations (Figure S1 in Supporting Information S1). The correlation 
between gauges is positive, higher than 0.4, and significant at a 95% confidence level for all station pairs.

Regarding meteorological variables, we used 0.25° gridded daily precipitation data from the India Meteorology 
Department (IMD) from 1978 to 2018. The daily gridded precipitation data set was obtained by interpolat-
ing observations from meteorological stations across India using an inverse distance weighting scheme (Pai 
et al., 2014). Gridded global SST anomalies from 1856 to 2021 with 5° spatial resolution were obtained from the 
International Research Institute (IRI) for Climate and Society at Columbia University (Kaplan et al., 1998; Parker 
et al., 1994; Reynolds & Smith, 1994). Atmospheric pressure, humidity, and horizontal and vertical wind fields 
from 1949 to 2021 were obtained from the National Centers for Environmental Prediction (NCEP)-National 
Centers for Atmospheric Research (NCAR) reanalysis data set (Kalnay et al., 1996; Kistler et al., 2001) with 5° 
spatial resolution.

In the case of large-scale climate indices, we obtained time series of Extreme Eastern Tropical Pacific SST (Niño 
1+2), East Central Tropical Pacific SST (Niño 3.4), Pacific Warm Pool Region (PWPR), and Indian Ocean 
Dipole (IOD) anomalies from the National Oceanic and Atmospheric Administration (NOAA; https://psl.noaa.
gov/data/climateindices/list/).

3.2. Covariates Selection

First, to perform the climate diagnostics, we conducted a principal component analysis across the detrended 
monsoon daily maximum streamflow of the five gauges considered in this study. The first two leading princi-
pal components (PC1 and PC2) explained most data variance (72% and 20%, respectively). We considered the 
detrended streamflow for the climate analysis since streamflows are affected by the reservoir operations, which 
weakens the climate signature (a negative temporal trend for most gauges, Kendall's τ coefficient ranging between 
0.13 and 0.44). To understand the physical mechanism behind these extremes, we obtained the composite maps of 
integrated water vapor transport (IVT; Gao et al., 2021; Neiman et al., 2008) and vector winds at 850 mb anoma-
lies for the top five wettest years and driest years (Figure S2 in Supporting Information S1). A positive anomalous 
IVT in and around the basin with winds from the Arabian sea is observed for wet years. At the same time, the IVT 
is anomalously low around the basin, and the winds are from the Bay of Bengal and to the south of the basin for 

Gauge

Area Elevation Mean streamflow Mean seasonal streamflow Max seasonal streamflow

(km 2) (m) (m 3 s −1) (m 3 s −1) (m 3 s −1)

Garudeshwar 86,494 12 886 2698 52,000

Mandleshwar 71,739 141 997 2938 46,398

Handia 51,115 260 785 2487 31,880

Hoshangabad 44,487 292 676 2092 28,600

Sandiya 32,495 301 481 1410 19,700

Table 1 
Basic Data Corresponding to the Streamflow Gauges in the Narmada River Basin Considered in This Study

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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the dry years. These moisture transport and rainfall patterns are consistent with the large -scale climate signatures 
(e.g., Chevuturi et al., 2021; Nanditha et al., 2022) and, consequently, support the ENSO teleconnection.

As mentioned, strong teleconnections between the summer monsoon rainfall in India and large-scale climate 
variables such as ENSO or IOD have been reported by other authors (e.g., Curtis et al., 2001; Kumar et al., 2006; 
Saji et al., 1999). These teleconnections support the initial inclusion of these large-scale climate indices as covar-
iates. However, the influence of ENSO (IOD) on the ISMR was found to be weakened (strengthened) in recent 
decades (Hrudya et al., 2020; Krishnaswamy et al., 2015; Rajagopalan & Molnar, 2012). Figure 3 shows the 
correlation between PC1 of detrended monsoon (July–August) daily maximum streamflow at the NRB and grid-
ded SST anomalies for a 0-month lead time (June) for the 1978–2018 period and the regions corresponding to 
the large-scale climate indices considered in this study. Areas of the large-scale climate indices do not show a 
high correlation for the July–August period. Therefore, we consider the West Indian Ocean (WIO, 42.5–62.5E 
and 2.5–27.5N) index that corresponds to the mean SST anomaly of the highly correlated region (the pink box 
in Figure 3).

We assessed the strength of the relationship between the monsoon daily maximum streamflow (July–August) and 
potential covariates for 0-month lead time (June) by computing Spearman's rank correlation coefficient, shown 
in Figure 4. WIO and PWPR (Figures 4a and 4b) show a strong negative correlation with the daily monsoon 
maximum streamflow. The Niño 3.4 index (Figure 4c) shows a weak and not significant correlation with the daily 
monsoon maximum streamflow at all the gauges. The Niño 1+2 and IOD climate indices (Figures 4d and 4e) 
show a significant correlation at some gauges, but it is weaker than that for WIO and PWPR.

We tested the following covariates for modeling the temporal nonstationarity of the GEV parameters (see Equa-
tions 3 and 4) for the period 1978–2018: PWPR, Niño 3.4, Niño 1+2, IOD climate indices, and the new indices 
defined as the mean SST anomaly of the highly correlated region from March, April, May, or June depending on 
the lead time (0-, 1-, 2- or 3-month lead time). The covariates use all information from the month before forecast 
issuance. As indicated earlier, we focus on forecasting monsoon daily maximum streamflow at lead times of 0-, 
1-, 2-, and 3 months, corresponding the release of the forecast on July 1, June 1, May 1, and April 1, respectively 
(Figure 5).

Table 2 shows the domain of the new indices considered for each lead time, which are called WIO, the Extended 
West Indian Ocean (EWIO), the East Pacific Cold Tongue (EPCT), and the Extended East Pacific Cold Tongue 
(EEPCT) for 0-, 1-, 2-, and 3-month lead time. Note that the new indices domain varies with the lead time, 
moving eastward as the lead time increases. To define the new index domain for the other lead times, we followed 
the same procedure as a 0-month lead—that is, we identified the region with high correlations and computed the 
index by averaging the SST anomaly over the domain (Figures S3 and S5 in Supporting Information S1). We use 
the changing domain since we are interested in a predictor that gives skillful predictions. However, we note that 
the regions at all the lead times correspond to the ENSO phenomena and that it influences the flow variability. 
If we picked the standard ENSO index for longer lead times, the correlations are weak with the flow; hence, we 

Figure 3. Correlation between PC1 of detrended monsoon (July–August) daily maximum streamflow at the Narmada River basin and gridded SST anomalies for a 
0-month lead time (June) for 1978–2018.
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shifted the SST region (new indices domain) lead time. Other authors have considered this approach for finding 
skillful covariates for forecasting streamflow in the western US (e.g., Grantz et al., 2005; Regonda et al., 2006, 
being the early proponents).

The reader can find Spearman's rank correlation coefficient plots between monsoon daily maximum streamflow 
and covariates for 1- to 3-month lead time in Supporting Information S1 (Figures S6–S8).

3.3. Model Structure for the NRB

The specific structure of the BHM for the NRB incorporated the covariates described in Section 3.2 for the 
first process layer. We modeled the location parameter of the GEV at each gauge as non-stationary, and the 
scale parameter of the GEV was kept stationary for all gauges since an initial run of the BHM considering it 
as non-stationary showed that their regression coefficients (𝐴𝐴 𝜶𝜶𝜎𝜎𝑗𝑗 = 0 for j > 0 in Equation 4 were not significant 
(posterior PDFs contain zero in their domain at a 90% confidence level). For the normal priors of 𝐴𝐴 𝜶𝜶𝜇𝜇𝑗𝑗 , 𝐴𝐴 𝜶𝜶𝜎𝜎0 , and 

𝐴𝐴 𝜶𝜶𝜉𝜉0 , we considered a variance of 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 = 10 , 𝐴𝐴 𝐴𝐴0𝑖𝑖
= 10 , and Ci = 1, respectively. We considered η = 2 for the LKJ 

correlation matrix density prior. They correspond to weakly informative priors.

3.4. Implementation and Model Fitting

Candidate BHMs were fit using the program STAN (Stan Development 
Team, 2014), its R extension (Stan Development Team, 2020), and the priors 
assigned in Section 3.3. STAN uses a Markov chain Monte Carlo (MCMC) 
simulation method that considers a No-U-Turn Sampler (NUTS; Hoffman 
& Gelman,  2014) to simulate the posterior probability distribution of the 
GEV regression coefficients and the Gaussian copula dependence matrix. 
We ran three parallel chains with different initial values, and each chain has 
a length of 12,000 simulations (iterations) with a burn-in size of 6,000 to 
ensure convergence. To reduce the sample dependence (autocorrelation), we 
chose a thinning factor of 6. The convergence of the posterior distribution of 
each regression coefficient was checked using the scale reduction factor, 𝐴𝐴 �̂�𝑅 , 
proposed by (Gelman & Rubin, 1992)—𝐴𝐴 �̂�𝑅 values lower than 1.1 for all the 

Figure 4. Spearman’s rank correlation coefficient between daily monsoon (July–August) maximum streamflow and covariates for a 0-month lead time (June). (a) 
The West Indian Ocean (WIO) index, (b) Pacific Warmpool Region (PWPR). (c) Niño 3.4, (d) Niño 1+2, and (e) Indian Ocean Dipole (IOD). Big circles indicate that 
Spearman’s rank correlation is significant (p value < 0.05).

Figure 5. Schematic of non-stationary models considered for four different 
lead times. The boxes denote, from the darker to lightest orange color: the 
model for a 0-month lead time (forecasts released on July 1), a 1-month lead 
time (forecasts released on June 1), a 2-month lead time (forecasts released 
on May 1), and a 3-month lead time (forecasts released on April 1). The same 
color scheme will be considered for Section 4.
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regression coefficients suggest model convergence. Consequently, the poste-
rior distributions of the GEV regression coefficients, the Gaussian copula 
dependence matrix, and the predictive posterior distributions of monsoon 
daily maximum streamflow consisted of 3,000 ensembles. The predictive 
posterior distributions of maximum spring streamflow (ensembles) for all 
years were estimated according to Section 2.3. The best BHM was selected 
for each lead time using the Watanabe-Akaike information criterion (AIC; 
Watanabe, 2010). This metric can be viewed as an improvement on the devi-
ance information criterion (DIC; Spiegelhalter et  al.,  2002) because it is 
fully Bayesian (uses the entire posterior distribution) and does not produce 
negative estimates of a model's effective number of parameters (Vehtari 
et al., 2017). For each candidate BHM, we computed the WAIC using the R 

package loo (Vehtari et al., 2020) and selected the model with the lowest WAIC value. In addition, the signifi-
cance of the GEV regression coefficients was checked for each lead time (posterior PDFs do not contain zero in 
the 90% credible interval). A similar procedure was followed to fit the candidate BHMs for NEETM, but omitting 
the Gaussian copula and estimating the NEETM ensembles according to Section 2.4.

3.5. Model Cross-Validation and Verification Metrics

To test the out-of-sample predictability of the model, we performed the leave-one-year-out cross-validation by 
dropping 1 year from the record (1978–2018), and the BHM was fitted using the remaining (training) years. 
Then, the fitted model is applied to estimate for the dropped year. We repeated the cross-validation procedure 41 
times.

To assess the at-site performance of the proposed BHM, we considered deterministic metrics—that is, the Pear-
son correlation coefficient (R) and the relative bias (BIAS)—and probabilistic verification measures, including 
the continuous ranked probability skill score (CRPSS) and PIT plot (Wang et al., 2009). Also, to assess the joint 
performance of the proposed BHM, we computed the energy skill score (ESS). The energy score (ES) assesses 
the probabilistic forecasts of a multivariate quantity (Gneiting et al., 2007, 2008) compared to a reference forecast 
model. For both CRPSS and ESS, we considered climatology as the reference model. A detailed description of 
the verification methods is provided the Supporting Information S1.

4. Results
4.1. Selection of the Best Model for Each Lead Time

We calibrated different candidate BHMs for each lead time from 1978 to 2018. Then, based on the lowest value 
of the Watanabe-Akaike information criterion (WAIC; Watanabe, 2010), we selected the best BHM. The WAIC 
values for the best model for each lead time are displayed in Table 3. The best BHM considered the new indices 
(i.e., WIO, EWIO, EPCT, and EEPCT) as the covariate for all lead times. However, for longer lead times of 2 and 
3 months, the BHM includes the PWPR as an additional covariate. The inclusion of an additional covariate could 
be due to the decrease in the predictive skill of the new indices at longer lead times; thus, the model includes 

the traditional large-scale climate indices to boost the predictive skill. The 
decline in predictive skill as lead time increases is apparent when comparing 
the WAIC values with the WAIC of the stationary BHM.

4.2. Cross-Validation

Figure 6 shows cross-validated daily monsoon maximum streamflow forecast 
ensembles from the best BHM at the Handia gauge for different lead times. 
For 0- and 1-month lead times (Figures 6a and 6b), all the observed values 
are captured by the ensemble spread (95% credible interval), most of them 
fall inside or close to the interquartile range of the ensembles, and the ensem-
ble's median captures some of the observed values. For 2- and 3-month lead 
times (Figures 6c and 6d), ensembles show similar features overall than for 

Lead time Index

Domain

Longitude (E) Latitude (N)

0-month WIO 42.5, 62.5 2.5, 27.5

1-month EWIO 42.5, 82.5 −32.5, 27.5

2-month EPCT 247.5, 277.5 −2.5, 7.5

3-month EEPCT 252.5, 282.5 2.5, 17.5

Table 2 
Domain of the New Indices Considered for Different Lead Times

Lead time Model Covariates WAIC

0-month Non-stationary WIO 249.6

1-month Non-stationary EWIO 252.2

2-month Non-stationary EPCT, PWPR 264.3

3-month Non-stationary EEPCT, PWPR 267.8

– Stationary – 271.2

Note. The same covariates for the location parameter are considered at all 
gauges for each model.

Table 3 
WAIC Values for the Best Model for Each Lead Time
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Figure 6. Time series of cross-validated daily monsoon maximum streamflow forecast ensembles from the best BHM at the Handia gauge for (a) 0-month lead time, 
(b) 1- month lead time, (c) 2-month lead time, (d) 3-month lead time. Blue and red points indicate when observed values are captured (or not) by the ensemble’s 
variability. Whiskers denote the 95% credible intervals, boxes the interquartile range, and horizontal lines inside the boxes the median. Outliers are not displayed.
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0- and 1-month lead except for 2013 (the highest flow in the record), where the ensemble spread does not capture 
the observed flow value. Also, ensembles have less temporal variability for a 3-month lead time (Figure 6d), 
indicating that it is getting closer to a stationary model or climatology (same ensemble forecast every year). 
This feature can be attributed to a reduction in the skill of the covariates as lead time increases and, as a result, 
an increase in the corresponding WAIC values (Table 3). Similar performance is observed for the other gauges 
(Figures S9–S12 in Supporting Information S1).

4.3. Model Performance at the Site for Different Lead Times

Figure 7 displays boxplots with deterministic performance metrics (R and BIAS) of BHM for different lead times. 
In the case of correlation (Figure 7a), the correlation decreases as the lead time increases, except at Garudeshwar 
and Mandleshwar, with median R values greater than 0.35 at all gauges and most 95% of their distribution values 
above 0 for a 0-month lead time. For the first two gauges (Garudeshwar and Mandleshwar), R increases from 
0- to 1-month lead with median values and 95% intervals above 0.48 and 0.2, respectively. R distributions for 0 
and 2-month leads are similar. Handia and Hoshangabad show similar correlations up to 1-month leads and not 
a high reduction for 2-month leads. Sandiya gauge presents the lowest performance in terms of correlation. A 

Figure 7. Boxplots of (a) Pearson correlation coefficient (R) and (b) BIAS at the five gauges of the NRB for different lead times (orange color scheme) from the 
cross-validation. The bold horizontal line in the boxplot is the median, the box of a boxplot shows the interquartile range (Q25–Q75), and the whiskers represent the 
sample 95%. Each boxplot comprises results from 3,000 sample bootstraps.
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substantial R reduction for 3-month lead times is reported for all the gauges. The BIAS reveals a good perfor-
mance (Figure 7a) with median values below 7% and their 95% intervals width ranging between 29% and 49% 
at all the gauges of the NRB and all lead times, which highlights the ability of BHM to provide low BIAS 
(Ossandón, Nanditha, et al., 2022). Handia gauge shows the lowest median values and variability (95% intervals 
width lower than 31%) of the BIAS for all the lead times.

Figure 8 shows the CRPSS distribution of BHM for different lead times from the cross-validation for the entire 
period (1978–2018) and only years with high observed maximum flows. For whole period (Figure 8a), Garudesh-
war and Mandleshwar gauges show an increase in skill for a 1-month lead compared to a 0-month lead, with mean 
values above 0.12 and almost 75% interval width higher than 0.1. Skill for 0- and 2-month leads are similar but 
slightly better for a 2-month lead with median values close to 0.1. Handia and Hoshangabad gauges present simi-
lar skill up to 1-month leads in median values (0.09–0.1) but an increase in the 95% interval width for 1-month 
leads. Even though there is a reduction in skill for a 2-month lead, it is still better than climatology (75% interval 
width above 0). In the case of the headwater gauge (Sandiya), it is seen that the skill decreases as the lead time 
increases (significant reduction after a 1-month lead), indicating a decrease in model skill with increasing lead 

Figure 8. Boxplots of CRPSS at the five gauges of the Narmada River basin for different lead times (orange color scheme) from the cross-validation for (a) the entire 
period (1978–2018) and (b) only high flow years (higher than the 60th quantile). The bold horizontal line in the boxplot is the median, the box of a boxplot shows the 
interquartile range (Q25–Q75), and the whiskers represent the sample 95%. Each boxplot comprises results from 3,000 sample bootstraps. Climatology is considered 
the reference model.
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time. Although there is a noticeable reduction in skill for a 3-month lead time, forecasts (CRPSS median values 
close to 0) for all the gauges are “coherent,” that is, they are always at least as skillful as climatology forecasts 
(Bennett et al., 2021; Krzysztofowicz, 1999). In the case of the CRPSS for only high flow years (Figure 8b), 

similar features to the entire period are seen, but with an enhancement in the 
skill, especially for a 0- and 1-month lead time.

Figure  9 displays PIT plots and the α-index of the BHM forecast for 
different lead times and five gauges of the NRB. For the first four gauges 
(Figures  9a–9d), the PIT plots are close to the 1:1 line for all gauges but 
slightly overestimate the forecast uncertainty for different lead times 
(orange gradient scheme). Sandiya gauge exhibits (Figure 9e) similar plots 
for most of the lead times except for a 1-month lead time that underesti-
mates the forecast uncertainty (s-shape), with low PIT values close to 95% 
Kolmogorov-Smirnoff confidence intervals. Still, the rest of the PIT values 
are close to the 1:1 line. These findings and α-index values above 0.9 for all 
lead times at different gauges indicate excellent forecast reliability for the 
four lead times.

4.4. Probabilistic Multivariate Performance Metrics

Figure 10 displays the cross-validation energy skill score (ESS) distribution 
for different lead times. An increase in the ESS is seen from 0- to 1-month 
leads, which can be explained by the lower skill at-site (CRPSS) obtained for 

Figure 9. PIT plots for daily monsoon maximum streamflow forecast ensembles from the best BHM for different lead times at (a) Garudeshwar, (b) Mandleshwar, (c) 
Handia, (d) Hoshangabad, and (e) Sandiya gauges. Panel (f) displays the alpha index as a function of the gauge for different lead times. Dashed lines in panels (a–e) 
give 95% Kolmogorov-Smirnoff confidence intervals.

Figure 10. Boxplots of energy skill score of the Narmada River basin for 
different lead times (orange color scheme) from the cross-validation. The bold 
horizontal line in the boxplot is the median, the box of a boxplot shows the 
interquartile range (Q25–Q75), and the whiskers represent the sample 95%. 
Each boxplot comprises results from 3,000 sample bootstraps. Climatology is 
considered the reference model.
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0-month compared to 1-month leads at Garudeshwar and Mandleshwar. After 1-month leads, ESS decreases as 
the lead time increases, indicating a decrease in model skill with increasing lead time. However, the four lead 
times capture the multivariate dependence better than the climatology forecast (ESS values above 0). In addition, 
ESS values above 0 were obtained if we used the BHM without the copula as the reference model (Figure S13 in 
Supporting Information S1), which implies that the BHM with a copula also captures the multivariate depend-
ence better than BHM without.

To highlight the ability of Gaussian copula to capture the multivariate dependence, we computed the time series 
of the spatially averaged forecast of the monsoon daily maximum specific streamflow over all five gauges of the 
NRB. Figure 11 shows the time series obtained from the cross-validation process for the best model at a 0-month 
lead time with and without a Gaussian copula. Results show that by adding a Gaussian copula to the BHM, there 
is an increase in the correlation between the posterior median and observations that the ensemble's interquartile 
range (Q25–Q75, Figure 11a) captures the correlations of the observations very well. Further, the ensembles 
represent a higher variability, which allows for the capture of some observations that are not well captured with-
out the copula (Figure 11b). Similar results are exhibited for other lead times (Figures S14–S16 in Supporting 
Information S1).

4.5. NEETM Forecast

We obtained the observed values of NEETM considering as a threshold 80th observed quantile of the daily 
monsoon maximum streamflow observed (Q80th). For the NEETM time series: the percentage of years with 

Figure 11. Time series of average forecasted daily monsoon maximum specific streamflow ensembles over all five gauges of 
the Narmada River basin for the best model with a 0-month lead time (b) with a Gaussian copula and (b) without a Gaussian 
copula. Blue and red points indicate when observed values are captured (or not) by the ensemble's variability, respectively. 
Whiskers denote the 95% credible intervals, boxes the interquartile range, and horizontal lines inside the boxes the median. 
Outliers are not displayed. R corresponds to the correlation between the posterior median and observations.
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high flow events (NEETM  >  0) for the NRB gauges range from 19% to 
22%. The time series of NEETM are displayed in Figure S17 in Supporting 
Information S1.

We applied the BHM to forecast NEETM for 0- to 3- month lead times as 
it was described in Section 2.1. We considered the same covariates used for 
maximum flows (Section 3.2), and the best BHM was selected based on the 
lowest WAIC value. WAIC values for the best model for each lead time are 
displayed in Table S2 in Supporting Information S1. We also checked the 
significance of the Poisson regression coefficients at a 90% confidence level 
for each lead time. Then, we performed a leave-one-year-out cross-validation 
by dropping one year from the record (1978–2018). To assess the accuracy 
of the BHM forecast, we used the Threat Score (DIC; Gilbert, 1984). The 
threat score corresponds to the number of correct “yes” forecasts divided 
by the number of occasions when the event was forecast or observed. The 
worst possible threat score is zero, and the best possible threat score is one 

(Wilks, 2011). We considered the median NEETM ensembles for each lead time, classified them into two catego-
ries (NEETM = 0 and NEETM > 0), and computed the TS for the NEETM > 0. We did not calculate the TS for 
NEETM = 0 since we are interested in the occurrence of high events during the peak monsoon. Also, the climato-
logical forecast is expected to predict this category (NEETM = 0) better, given its overpopulation in the observed 
data (see Figure S17 in Supporting Information S1). Figure 12 shows the results obtained for the cross-validation. 
Although TS values are not so high (below 0.4), the BHM model at different lead times adds some skill compared 
to climatology at almost all gauges and lead times. The exception is Handia for 1- and 3- month lead times with 
similar TS as climatology. The low increase in the TS can be explained by the low number of observed nonzero 
NEETM values at different gauges of the NRB, which biases the model's fit toward the non-occurrence of high 
events. The BHM calibration results show a slight increase in TS compared to the cross-validation for almost all 
the gauges and lead times (Figure S18 in Supporting Information S1).

5. Summary and Discussion
This study presented a Bayesian hierarchical model (BHM) to forecast two flood risk attributes - seasonal daily 
maximum flow and the number of events that exceed a threshold during a season (NEETM)—and demonstrated 
it in a rainfed river NRB basin in India for 0–3 months lead times. The flood risk attributes at several gauges 
in a basin are modeled using a Gaussian copula and generalized extreme value (GEV; magnitude) or Poisson 
(frequency) marginals with non-stationary parameters and without a Gaussian copula. These parameters are 
modeled as a linear function of suitable covariates. As potential covariates, we used indices of large-scale climate 
teleconnections, that is, Niño 3.4, Niño 1+2, IOD, PWPR, and the new indices WIO, EWIO, EPCT, and EEPCT, 
defined at this basin for 0-, 1-, 2-, and 3-month lead time.

Two criteria were adopted for selecting the best model for different lead times: the WAIC (Watanabe, 2010) 
and the significance of the GEV (Poisson) regression coefficients for the daily monsoon maximum streamflow 
(NEETM). The Higher WAIC value for the stationary model compared to the best BHM model for each lead 
time (Table 3 and Table S2 in Supporting Information S1) and the significance of the regression coefficients for 
the selected models illustrate the need for the time-varying model. This need is further bolstered by the fact that 
stationary models, such as climatology, are insufficient for probabilistic forecasting because they generate the 
same ensemble forecast every time, disregarding the temporal variability.

The selection of the best candidate Bayesian hierarchical models (BHMs) for daily monsoon maximum stream-
flow revealed that WIO, EWIO, EPCT, and EEPCT were selected as a covariate at the corresponding lead times, 
with traditional large-scale climate indices included as additional covariate only for a 2- and 3-month lead times 
(PWPR). These results suggest that although several authors have reported correlation between large-scale 
climate indices and seasonal rainfall over India (Curtis et al., 2001; Kumar et al., 2006; Saji et al., 1999), they 
do not necessarily imply strong teleconnection with maximum streamflow. Thus, conducting detailed climate 
diagnostics to find skillful covariates for daily seasonal maximum streamflow is highly recommended. None-
theless, using just the large-scale climate indices as covariates, the BHM provides skillful forecasts of seasonal 
flow extremes compared to climatology, with higher skill at shorter lead times. This feature is a powerful aspect 

Figure 12. TS values of forecasted NEETM at the gauges of the Narmada 
River basin for different lead times from the cross-validation for the category 
NEETM >0.



Water Resources Research

OSSANDÓN ET AL.

10.1029/2022WR033194

17 of 20

of the proposed method. This study is one of the first attempts at long-lead forecasting of attributes of seasonal 
streamflow extremes in India. It offers increased prospects of application in other basins of the country and other 
parts of the world. Seasonal basin average precipitation was found to correlate strongly with the flow extremes; 
however, spatial precipitation forecasts are not available at longer lead times. However, seasonal climate forecasts 
from Indian Meteorological Department (IMD) and other agencies could be exploited in a follow-up study. In 
addition, we should remark that our BHM provides a correlation skill of 0.4–0.5 of seasonal streamflow maxi-
mum at some gauges much ahead of the actual occurrence of the extreme. These skill are comparable to the 
ISMR forecast across India for a 0-month lead time for different studies (r < 0.46; Delsole & Shukla, 2012; Jain 
et al., 2019; Köhn-Reich & Bürger, 2019; Rajeevan et al., 2012). However, the ISMR forecast skill is for a single 
seasonal value for India, which is of limited help in flood management.

Overall, the BHM framework presented has the following benefits.

•  Considering non-stationary parameters of marginal distributions by linear regressions of them with 
time-dependent covariates allow capturing the temporal variability of streamflow extremes.

•  Provides “coherent” forecast, that is, never less accurate than climatology forecast.
•  Including a copula in the BHM enables capturing spatiotemporal dependence of streamflow extremes, which 

is not entirely possible with independent marginal models.

The comparative analysis for four different lead times revealed that increasing the lead time from 0- to 2- months 
only weakly decreases model skill for the first four gauges (Garudeshwar, Mandleshwar, Handia, and Hoshang-
abad), which are the closest gauges to the high population center of the basin. Even though a higher skill is 
reported for the 1-month lead relative to the 0-month lead at the two lower gauges (Garudeshwar and Mandlesh-
war), these findings imply that the framework proposed could be helpful for the early implementation of a robust 
system of flood risk adaptation and preparedness strategies. For example, this medium-term forecast of seasonal 
maximum (up to 2-month lead) can help policymakers immensely to devise risk-based mitigation and adaptation 
strategies before the start of the season by considering early alerts based on the exceedance of a flow threshold 
by specific ensemble forecast quantiles (e.g., 50th to 75th; Ossandón, Brunner, et al., 2022). That early flooding 
alert can complement the short-term daily forecast model implemented by Ossandón, Rajagopalan, et al. (2022) 
and provide a multi-step flood risk system alarm. Such a communication strategy could help decision-makers 
implement adaptation strategies that address the spatial dimension of flooding.

In the case of NEETM, the results of the brief demonstration implemented in this study are promising, but further 
work and analysis need to be conducted to get better results. Notably, a trade-off analysis between the ability of 
the BHM to capture nonzero NEETM (times series with a higher number of nonzero values) and the setting of 
a threshold high enough to be useful for risk mitigation planning. Also, using covariates skillful for NEETM 
instead of just relying on the skill of the same covariates to predict the maximum flow magnitude could help 
improve the performance of BHM for NEETM forecasting.

Finally, this framework's future extensions include using long-term forecasts of seasonal precipitation as potential 
covariates, its extension to model and forecast the river stage, valuable input for evacuation plans, and its appli-
cation to other rainfed river basins across the world.

Data Availability Statement
The data set used in this study, which consists of time series of potential covariates, seasonal daily maximum 
streamflow and NEETM at five station gauges in the Narmada River basin, and the scripts for the implementation 
of the BHM proposed here, can be downloaded from https://zenodo.org/badge/latestdoi/593792803.
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